
Spatial Point Patterns

Observed locations of events: datum is the location

Major shift in interest from previous material!
Up to now, location has been fixed point or fixed area,

Location arbitrary or happenstance, often controlled by the investigator
(where to take point samples)
Random quantity has been the value at each location

Random quantity is now the location of an event

May record additional information at each location ⇒ marked point
process

Sometimes small # of classes
Examples: species of tree, live / dead plant, successful / unsuccessful
bird nest, disease case / not diseased person
Or, may be continuous quantity
Examples: diameter of tree, angle of a crystal

But that addn info only exists when there is an event at that location
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Duck nests in a 1/4 section of ND
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Potential questions

1 is intensity (# events / unit area) const. or vary. over the study area
2 how does intensity vary as function of potential covariates

EX: does intensity of duck nests decline with distance to wetland?
3 are events randomly scattered, clustered, or regular

EX: are duck nests independently located in space, or do they cluster
near other duck nests, or do they avoid being near other nests?

4 how can we describe pattern at multiple scales?
5 how can we describe rel. between two (or more) types of points?

EX: do depredated nests tend to occur near other depredated nests?
6 how can we describe the cor. between marks as a function of

distance?
when mark is a continuous value

Historically, 3) was most important Q

Now, moving beyond to all the other Q.

We’ll begin with 3 and 4, then 5 and 6, end w/intensity
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Application areas

Many, including:

Ecology: historically important field of application, many different
applications, including:

spatial pattern (random / clustered / avoidance) of a single species
patterns of mortality (clustered or not?)

transportation: locations of accidents

neurology: locations of neurons

geology: locations of earthquakes (space, or space/time)

geography: do similar types of stores tend to cluster near each other?

epidemiology: do cases of a particular disease cluster?

If so, suggests contagious disease or single spatial cause
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Examples in pictures:
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Amacrine cells, on
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Homogeneous Poisson Process =
Complete Spatial Randomness

imagine a very small area, dA, with P[event occurs in dA] = λdA

dA small enough that:

at most 1 event in dA
most areas have 0 events

λ = expected # events / unit area

λ is the intensity of the spatial process

Two assumptions that give HPP = CSR

λ constant over study area
the outcome (0/1) in dA1 is independent of the outcome in
non-overlapping area dA2
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Homogeneous Poisson Processes

Some mathematical results:

Define NA = # points in area A (no longer small)

NA ∼ Poiss(λ A)

mean #: λ A
var #: λ A

pmf P[X | λA] = e−λA(λA)X

X !

examples: CSR, observe 196 obs on (0,10), (0,10)

Look at individual 1x1 quadrats

mean count per 1x1 quadrats = 1.96
Var count = 1.90
Histogram close to theoretical pmf
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Clustering

Clustered processes/pattern: points more likely to occur near other
points.

For quadrats, means that:

some quadrats contain a cluster, have more points than expected
other quadrats have no points

same mean, larger variance

for clustered process with 196 points on next two slides:

mean = 1.96, variance = 4.70
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A clustered process
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Regular processes

P[event in dA] lower if dA close to another point

Tends to “space out” points
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Amacrine cells, on
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A better approach

Historically: Quadrats used extensively

But, very limited. Restricted to one specific scale (size of quadrat)

Better approach

record locations of events, not just count in a box
usually all events in a predefined area
can be random sample of events
But, hard to take a simple random sample

Can convert to quadrat counts, but can do a LOT more with (x,y)
data
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Summary functions

Concept:

measure something as a function of distance

Various choices of summary

Distance to nearest neighbor (event - event distance)
Distance to nearest point (point - event distance)
Combination of these two
Ripley’s K function
pair correlation function

Each has uses

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 6 Spring 2020 20 / 76



Distance to nearest neighbor

How close is each obs. to its nearest neighbor?

clustering: NN distances tend to be small
random (CSR): intermediate
regular: NN distances tend to be large

Historical: calculate mean NN distance, compare to theoretical value
(Clark-Evans test)

Current: estimate cdf of NN distance: G (x) = P[NN distance ≤ x ]

for each event: find NN, calculate distance to NN
hard part is finding NN. Some fancy and fast algorithms (see NN
article)
compare estimated Ĝ (x) to theoretical G (x) for CSR
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Theoretical CDF on NN distance

P[D < x ] = 1− e−λπx2

x is distance of concern,
λ is intensity (events per unit area)
πx2 is area of circle, radius x

(For the statisticians). Nice ex. of CDF method for deriving
transforming a random variable

Define D = distance to NN dist.

G (x) = P[D ≤ x ] = 1− P[D > x ]

= P[no obs in circle of radius x ]

NA ∼ Poiss(λA), so:

P[0] =
e−λA(λA)0

0!

P[D ≤ x ] = 1− e−λπx2

Similar ideas, different formula for 1D or 3D.
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Edge effects

Above assumes infinite plane

Real study areas have edges

When a point is close to edge of mapped area, what is the distance to
the NN?

●●

●

●●

overestimate D.

true NN may be just over the
boundary (close to event)

observed NN (inside study area) is
larger than it “should be”

So underestimate G (x) especially
for large x
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Edge effects

Three approaches to edge effects

1) Ignore problem.

Study area edge is a real edge (e.g. lake shoreline)
really care about distance to nearest valid event

2) Traditional: adjust estimator

“edge-corrected” estimator of Ĝ (x)
Usual: use the Kaplan-Meier estimator for censored data
others have been proposed, avoid reduced sample method
but, bias correction increases Var Ĝ (x)

3) Radical: adjust expectation

Use uncorrected estimator
Change theoretical G (x) to account for edge effects

If goal is to est. G (x), 2) much better

If goal is to test CSR (or some other process), 3) has higher power

Estimate theoretical G (x) by simulation
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CSR
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clustering

More points close: shorter NN distance
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inhibitation / regularity

Fewer points close: longer NN distance

Hard core process: no points within a minimum distance
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Sampling variance of Ĝ (x)

How to calculate Var Ĝ (x)?

Quite a hard problem: 1) edge effects

2) “Reflexive NN’s”: pair of points

B is A’s NN, A is B’s NN
same NN distance
surprisingly common: P[reflexive] = 0.63 for CSR
increases Var Ĝ (x)

Var Ĝ (x) has been derived under CSR, ignoring edge effects

Now, almost always computed by simulation

Simulate a realization of null hypothesis process (e.g. CSR)
Estimate Ĝ (x)
Repeat simulate/estimate 99 or 999 times
Calculate Var G (x) at various x

Or go straight to a confidence interval

Calculate0.025 and 0.975 quantiles of Ĝ (x) at a specified x value
repeat for various x ’s
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Cypress trees
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Point-event distance = empty-space function

cdf of distance from randomly chosen point (not an event) to nearest
event

Usually denoted F (x)

Under CSR, ignoring edge effects: F (x) = 1− e−λπx2

same derivation as for G (x)

But now:

large distances ⇒ clustering,
because big areas of empty space
small distances ⇒ regularity

Evaluated in same way as G (x)

F (x) more powerful than G (x) to detect clustering

G (x) more powerful to detect regularity
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Baddeley’s J function

Can combine F (x) and G (x)

J(x) =
1− G (x)

1− F (x)

Interpretation:

clustering: J(x) < 1
CSR: J(x) = 1
regularity: J(x) > 1

Much newer than F (x) or G (x): 1996 paper

Few have much experience with it
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Looking at multiple scales simulataneously

I’ve emphasized nearest neighbor (of an event, of a point).

closest event (to the event, to the point)

Straightforward extension to 2nd NN (next closest) , 3rd NN, ...

Gets harder to interpret
and you have a separate plot for each NN rank

Rethink how to compute the summary

Instead of “how far to closest point”
think of how many points within a specified distance?

leads to Ripley’s K statistic (Ripley 1976, J. Appl. Prob)
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Ripley’s K function

Like F (x), G (x), and J(x), looks at 2nd order characteristics of a
point pattern

Now, the most commonly used point pattern analysis function

Provides information at multiple scales simultaneously

K (x) =
1

λ
E (# events w/i x of an event)

Interpretation, for each distance x :
Clustering: K (x) large. Many events close to other events at x or
smaller
Regularity: K (x) small or 0 at short distances.

Notes:
K (x) can detect clusters of regularly spaced points
i.e., different patterns at different scales
but it is cumulative (number of points within distance x
we’ll see a refinement, the pair correlation function, that looks at
points at distance x
which simplifies (greatly) inferring the scale of a pattern
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K (x) under CSR

Expected value, E K̂ (x):

Under CSR, events are independent, E # in area A = λA
E K̂ (x) = E # in area πx2/λ = λπx2/λ = πx2

Variance, Var K̂ (x):

Var # in area A = λA
so, Var K̂ (x) = 1

λ2 Var # in πx2

= πx2/λ
smaller with more expected points (larger λ)
increases with distance, x
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Besag’s L function

L(x) is a variance equalizing transformation

if Y ∼ Poiss(Xβ), then
√
Y has constant variance

Besag’s original version

L(x) =
√

K (x)/π

Wiegand and Moloney (2014) call this L1(x)

Under CSR: L(x) = x, Var L̂(x) approx constant.

I prefer L∗(x) = L(x)− x

Wiegand and Moloney (2014) call this L2(x)

Nice feature of L∗ = L2(x): under CSR, L∗(x) = 0

I believe plots of L∗ are much clearer (but you decide which you
prefer)

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 6 Spring 2020 42 / 76

CSR

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

r

L
(r

)

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

04
−

0.
03

−
0.

02
−

0.
01

0.
00

r

L
(r

)−
r

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 6 Spring 2020 43 / 76

Clustered
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inhibition
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Pair correlation functions

K (x) and L(x) are cumulative measures
Based on number of events within x of another event

What if you want to describe association at distance x?
Closer to intuition about spatial scale
Can untangle multiple processes

inhibition at short distances
clustering at large distances

pair-correlation function, g(x) or ρ(x)

g(x) =
1

2πx

dK (x)

dx

under CSR (K (x) = πx2), dK(x)
dx = 2πx , and g(x) = 1

g(x) > 1⇒ events more likely AT distance x than under CSR ⇒
clustering at a scale of x
g(x) < 1⇒ events less likely AT distance x than under CSR ⇒
repulsion at a scale of x
range is (0, ∞) with 1 as the neutral point
so often log transform: evaluate log g(x)
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Estimators of g(x)

g(x) is much harder to estimate than K (x)

K̂ (x) is a sum (# events within distance < x)
g(x) depends on 0/1 variable: is there an event at distance = x or not
parallel to the issue that a cdf: P[X < x ] is easier to estimate than a
pdf: f [X = x ]

Two proposed estimators:

Wiegand and Moloney “O-ring” estimator: # events within (x, x + dx)
equivalent to binning obs. to make a histogram
kernel smoothing: much better (both for density estimation and ĝ(x))
What is the histogram of 5,10,11,11, 12, 16?

choice of “bin width” really matters
see next two slides
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Historgram with wide categories
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Historgram with narrow categories
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Kernel smoothing

Histograms estimate probability density for a range of X using only
the values in that range
the variance in the estimated probability depends on the number of
obs in the bin

wide bin: many points, low variance, but biased estimate (one number
for many X values)
narrow bin: low bias (small range of X values), but large variance (few
obs in bin)

Density estimation partially avoids this tradeoff and is less dependent
on the breaks between categories

Concept: superimpose little “bumps” of probability around each obs.
Add up the probability to estimate f (x)

result depends on sd of each “bump”

sd called “bandwidth”

result also depends on “kernel”, i.e. the shape of the bump

notice that range of density estimate is wider than data range.
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CSR
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Clustered
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inhibition
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Interpreting / using measures

1) to test CSR: pointwise tests

estimate L̂(x) at a range of distances, x
use simulation to calculate point-wise quantiles of L̂(x)
plot L̂(x) and simulation envelope
interpret deviations above and below expected
consider distance x1, then distance x2
called pointwise-tests.
Type I error rate, α level, correct for one test
One issue (serious): multiple testing

doing many tests, one at each distance
P[reject — CSR at any distance] is much larger than P[reject — CSR]
especially for cumulative summary functions, K(x) and L(x)
Quite hard to do a true level α test
usual approaches don’t work well because L̂(x1) and L̂(x2) are correlated
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Interpreting / using measures

2) summary tests of CSR

Calculate a summary statistic across “relevant” range of distances
Two common choices, using L(x) as example:

s = maxx [| L̂(x)− L(x) |] (maximum statistic, Maximum Absolute
Deviation)
s =

∫
x
[L̂(x)− L(x)]2 (integral statistic, Loosmore and Ford test)

Both computed by evaluating “interesting” set of x , finding max or sum

L(x) can be theoretical expectation (K (x) = πx2, L2(x) = 0)
Or, L(x) computed as average of n simulations (see below)

accounts for bias due to edge corrections

Integral better when consistent but small deviations above expected
curve

more commonly used

Max better when large excursion from theoretical value for a small
range of distances
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Summary tests

Turning into a hypothesis test

Have sobs from the observed pattern
Simulate many (39, 99, 999) random patterns under H0 (e.g., CSR)
Calculate summary statistic for observed data and each simulated data
set
Calculate P[as or more extreme summary statistic] = p-value
Usually one-sided definition of more extreme (only care about large s)

This avoids multiple testing issues and gives valid p-value
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Summary tests: Cypress pointwise tests
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Summary tests: Cypress summary tests
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Summary tests

Need to choose upper and lower distances

best when chosen to be biologically relevant.
DON’T look for the most significant region

most commonly used to test CSR

But you specify the null hypothesis
same approach can be used for any point process model (examples
coming soon)

The integral and especially the maximum statistic assume Var L̂(x)
approximately constant

Don’t use K (x): because Var K (x) is definitely not constant
Use L(x) instead, approximately constant variance
But not perfect (see next two plots)

Can transform G (x) or F (x) (both proportions), e.g. sin−1
√

ˆG (x)

There are studentized summary statistics, if unequal Var is bad

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 6 Spring 2020 64 / 76



0 2 4 6 8 10 12

−1
0

1
2

r

L(r
)

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 6 Spring 2020 65 / 76

0.00 0.05 0.10 0.15 0.20 0.25

−0
.0

8
−0

.0
4

0.
00

0.
04

r

L(r
)−

r

Lobs(r) − r

Ltheo(r) − r

Lhi(r) − r

Llo(r) − r

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 6 Spring 2020 66 / 76

A poor use of a test of CSR

Until a few years ago, it was fashionable to

map locations of all things in an area. Usually trees or other plants,
could be animal nests
usually many species
for each species, test CSR (usually using K/L functions)
tabulate # species that are clustered, # random, # regular

then make ecological conclusions about the community

do you see the issue here?
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A poor use of a test of CSR

If you don’t reject H0: CSR for a species, do you know that species is
randomly distributed?

What if you only had 10 individuals for that species?

Statistical power to detect ’not-CSR’ is really small

failure to reject H0 does not ⇒ H0 is true

In my experience (mostly with trees)

large # events: detect clustering, sometimes regularity
small # events: accept H0

If you expect intensity to vary over a study area, that introduces
clustering.

If you believe that non-random spatial patterns are the norm, the
hypothesis test is really telling you only whether you have a
sufficiently large sample size to detect that non-random pattern.
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Interpreting / using measures

3) Estimating # “excess events”

if pattern is CSR, expect λπx2 events within radius x of another event
data says an average of λK̂ (x) events within radius x of another event
λK̂ (x)− λπx2 is average “excess events”
describes magnitude of clustering in subject-matter terms

less frequently used is K̂(x)
πx2 − 1

proportion of excess events at distance x

Cypress tree illustration

λ̂ = 98/(50× 200) = 0.0098
at distance of 10m, K̂ (10) = 488.6⇒ ave. of 4.7 cypress trees within
10m of another cypress tree
π102 = 314.7⇒ 1.7 excess cypress trees within 10m of another.
Or, 488.6

314.7 − 1 = 0.55⇒ 55% more cypress trees within 10m of another.
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Interpreting / using measures

4) Describing spatial scale

“scale” is a tricky concept. Various definitions
Here, scale = distance(s) at which events repulse each other or attract
each other
A distance-specific concept
Many studies have used K̂ (x) or L̂(x) to estimate scale, e.g. find x
where L(x) is most different from theoretical value

Increasingly understood to be wrong

Both K̂ (x) and L̂(x) are cumulative functions: # points within circle of
radius x
Small # at distance x may be because repulsion (fewer pts.) at
distances < x , even if strong clustering at x
Really want to know what is going on AT distance x , not ≤ x

Use pair-correlation function
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Interpreting / using measures

5) How precise is L̂(x) or ĝ(x)?

Not the width of the Null hypothesis envelopes

Precision of L̂(x) or ĝ(x)

Certainly depends on N = # points
But also on the spatial pattern

K̂(x) more variable for clustered patterns

If you know the true spatial pattern, simulate from that pattern and
calculate envelope

If you don’t know the true pattern, use a bootstrap

Point pattern bootstrap proposed by Loh, 2008
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The bootstrap

General method for estimating precision of a statistic
Uses resampling the data to approximate the unknown sampling
distribution of a statistic
Gives you the se of a statistic or a confidence interval for a statistic
CI much more common
Not the same as a randomization test or a null hypothesis test

Hypothesis test: simulate / resample assuming H0 (CSR, no diff. in
means)
Bootstrap: simulate / resample assuming Ha (arbitrary pattern,
non-zero diff)

Extremely useful tool for “difficult” problems
Usual forms of bootstrap don’t work for point pattern data
Problem is that one point contributes to many L(x)
Loh devised something that (so far) is acceptable sometimes

resample contributions to ĝ(x) or L̂(x)

Issues when bootstrap average curve not same as data curve (see
below)
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Cypress L(x) bootstrap
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Cypress L(x) CSR (null) envelope
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Cypress g(x) bootstrap
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Cypress g(x) CSR (null) envelope
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