Spatial Point Patterns

@ Observed locations of events: datum is the location
o Major shift in interest from previous material!
o Up to now, location has been fixed point or fixed area,
o Location arbitrary or happenstance, often controlled by the investigator
(where to take point samples)
o Random quantity has been the value at each location

@ Random quantity is now the location of an event
@ May record additional information at each location = marked point
process
o Sometimes small # of classes
o Examples: species of tree, live / dead plant, successful / unsuccessful
bird nest, disease case / not diseased person
e Or, may be continuous quantity
o Examples: diameter of tree, angle of a crystal

o But that addn info only exists when there is an event at that location
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Potential stions

@ is intensity (# events / unit area) const. or vary. over the study area
@ how does intensity vary as function of potential covariates
o EX: does intensity of duck nests decline with distance to wetland?
@ are events randomly scattered, clustered, or regular
o EX: are duck nests independently located in space, or do they cluster
near other duck nests, or do they avoid being near other nests?
@ how can we describe pattern at multiple scales?
@ how can we describe rel. between two (or more) types of points?
e EX: do depredated nests tend to occur near other depredated nests?

@ how can we describe the cor. between marks as a function of
distance?
e when mark is a continuous value

o Historically, 3) was most important Q
@ Now, moving beyond to all the other Q.
o We'll begin with 3 and 4, then 5 and 6, end w/intensity
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Application areas

Many, including:
@ Ecology: historically important field of application, many different
applications, including:
o spatial pattern (random / clustered / avoidance) of a single species
o patterns of mortality (clustered or not?)

transportation: locations of accidents

neurology: locations of neurons

geology: locations of earthquakes (space, or space/time)

geography: do similar types of stores tend to cluster near each other?
epidemiology: do cases of a particular disease cluster?

o If so, suggests contagious disease or single spatial cause
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Examples in pictures:
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Amacrine cells, on
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Homogeneous Poisson Process =
Complete Spatial Randomness

@ imagine a very small area, dA, with Pevent occurs in dA] = AdA
@ dA small enough that:

e at most 1 event in dA
e most areas have 0 events

A = expected # events / unit area
@ )\ is the intensity of the spatial process
e Two assumptions that give HPP = CSR

e )\ constant over study area
o the outcome (0/1) in dA; is independent of the outcome in
non-overlapping area dA;

Philip M (lowa State Univ.) 2 alys 6 Spring 2020

Homogeneous Poisson Processes

Some mathematical results:
o Define Ny = # points in area A (no longer small)
o Ny ~ Poiss(\ A)

e mean #: A A
o var #: AA

—AA X
o pmf P[X | AA] = <5047

o examples: CSR, observe 196 obs on (0,10), (0,10)
@ Look at individual 1x1 quadrats

e mean count per 1x1 quadrats = 1.96

e Var count = 1.90

o Histogram close to theoretical pmf
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Clustering

@ Clustered processes/pattern: points more likely to occur near other
points.
@ For quadrats, means that:
e some quadrats contain a cluster, have more points than expected
o other quadrats have no points
@ same mean, larger variance
o for clustered process with 196 points on next two slides:
e mean = 1.96, variance = 4.70
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A clustered process
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Regular processes

o Plevent in dA] lower if dA close to another point

@ Tends to “space out” points
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A better approach

o Historically: Quadrats used extensively
o But, very limited. Restricted to one specific scale (size of quadrat)
@ Better approach

o record locations of events, not just count in a box
o usually all events in a predefined area

e can be random sample of events

o But, hard to take a simple random sample

e Can convert to quadrat counts, but can do a LOT more with (x,y)
data

(lowa State Univ.) a Analysis 6 Spring 2020

Summary functions

o Concept:
o measure something as a function of distance
@ Various choices of summary
Distance to nearest neighbor (event - event distance)
Distance to nearest point (point - event distance)
Combination of these two
Ripley’s K function
pair correlation function

o Each has uses

State Univ.)




Distance to nearest neighbor

o How close is each obs. to its nearest neighbor?
o clustering: NN distances tend to be small
o random (CSR): intermediate
o regular: NN distances tend to be large
@ Historical: calculate mean NN distance, compare to theoretical value
(Clark-Evans test)
o Current: estimate cdf of NN distance: G(x) = P[NN distance < x|
o for each event: find NN, calculate distance to NN
o hard part is finding NN. Some fancy and fast algorithms (see NN
article) .
o compare estimated G(x) to theoretical G(x) for CSR
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Theoretical CDF on NN distance

o P[D < x]=1—e ™
e x is distance of concern,
e )\ is intensity (events per unit area)
o 7x? is area of circle, radius x
o (For the statisticians). Nice ex. of CDF method for deriving
transforming a random variable
@ Define D = distance to NN dist.

G(x) P[D<x]=1-P[D > x]
= P[no obs in circle of radius x]

Nag ~ Poiss(A\A), so:

ef>\A A 0
Pol = 0(! :
PD<x] = 1—e

@ Similar ideas, different formula for 1D or 3D.
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Edge effects

@ Above assumes infinite plane
@ Real study areas have edges

@ When a point is close to edge of mapped area, what is the distance to
the NN?

P

Q @ overestimate D.

o true NN may be just over the
boundary (close to event)

@ observed NN (inside study area) is
larger than it "should be”

@ So underestimate G(x) especially
@ for large x
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Edge effects

@ Three approaches to edge effects
@ 1) Ignore problem.

o Study area edge is a real edge (e.g. lake shoreline)
o really care about distance to nearest valid event

e 2) Traditional: adjust estimator

“edge-corrected” estimator of G(x)
Usual: use the Kaplan-Meier estimator for censored data
others have been proposed, avoid reduced sample method

]
]
L]
o but, bias correction increases Var G(x)

@ 3) Radical: adjust expectation
o Use uncorrected estimator
o Change theoretical G(x) to account for edge effects

o If goal is to est. G(x), 2) much better
o If goal is to test CSR (or some other process), 3) has higher power

@ Estimate theoretical G(x) by simulation
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clustering

@ More points close: shorter NN distance
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inhibitation / regularity

o Fewer points close: longer NN distance

@ Hard core process: no points within a minimum distance
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Sampling variance of é(x)

o How to calculate Var G(x)?
@ Quite a hard problem: 1) edge effects
@ 2) “Reflexive NN's": pair of points
e Bis A's NN, Ais B's NN
o same NN distance
o surprisingly common: P[reflexive] = 0.63 for CSR
o increases Var G(x)

Var é(x) has been derived under CSR, ignoring edge effects
@ Now, almost always computed by simulation
o Simulate a realization of null hypothesis process (e.g. CSR)
o Estimate G(x)
o Repeat simulate/estimate 99 or 999 times
o Calculate Var G(x) at various x
@ Or go straight to a confidence interval

o Calculate0.025 and 0.975 quantiles of G(x) at a specified x value
e repeat for various x's
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Cypress trees
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Point-event distance = empty-space function

o cdf of distance from randomly chosen point (not an event) to nearest
event

Usually denoted F(x)
Under CSR, ignoring edge effects: F(x) =1— e
o same derivation as for G(x)

But now:
o large distances = clustering,
because big areas of empty space
o small distances = regularity

Evaluated in same way as G(x)

F(x) more powerful than G(x) to detect clustering

G(x) more powerful to detect regularity
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Baddeley's J function

e Can combine F(x) and G(x)

@ Interpretation:

o clustering: J(x) < 1

o CSR: J(x) =1

o regularity: J(x) > 1
@ Much newer than F(x) or G(x): 1996 paper

o Few have much experience with it

@© Philip M. Dixon (lowa State Univ.)

Spatial Data Analysis - Part 6

1-G(x)
M) =1"F

Spatial Data Analysis - Part 6

T T T
10 12 14

Spring 2020

o
R e S I I
[se]
S
)
~— ©
- o
< n
< ka(r)
~ Tt JDOIS(r)
S
T T T T T T T T
(0] 2 4 6 8 10 12 14

@© Philip M. Dixon (lowa State Univ.)

Spatial Data Analysis - Part 6

o
S
S}
i
=
P
N

—

= <

= v

<
~—
N ]
<}

—  Jos(r)
Jtheo(r)
Ini(r)
Jlo(r)

(@© Philip M. Dixon (lowa State Univ.)

Spatial Data Analysis - Part 6



Looking at multiple scales simulataneously

o |'ve emphasized nearest neighbor (of an event, of a point).
@ closest event (to the event, to the point)
e Straightforward extension to 2nd NN (next closest) , 3rd NN, ...

o Gets harder to interpret
e and you have a separate plot for each NN rank

@ Rethink how to compute the summary

o Instead of “how far to closest point”
o think of how many points within a specified distance?

o leads to Ripley's K statistic (Ripley 1976, J. Appl. Prob)
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Ripley's K function

o Like F(x), G(x), and J(x), looks at 2nd order characteristics of a
point pattern
@ Now, the most commonly used point pattern analysis function
@ Provides information at multiple scales simultaneously
1
A
@ Interpretation, for each distance x:
o Clustering: K(x) large. Many events close to other events at x or
smaller
o Regularity: K(x) small or 0 at short distances.
@ Notes:
o K(x) can detect clusters of regularly spaced points
o i.e., different patterns at different scales
e but it is cumulative (number of points within distance x
o we'll see a refinement, the pair correlation function, that looks at
points at distance x
o which simplifies (greatly) inferring the scale of a pattern

K(x) = —E (# events w/i x of an event)

© Philip (lowa State Univ.) atial Data Analysis - Part 6 Spring 2020

K(x) under CSR

o Expected value, E K(x):
e Under CSR, events are independent, E # in area A = )\A
o E K(x) = E # in area mx2/A = Arx2/\ = 7x2
e Variance, Var K(x):
o Var # inarea A= )\A
o 50, Var K(x) = & Var # in mx?
o = mx?/A
o smaller with more expected points (larger \)
e increases with distance, x
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esag's L

@ L(x) is a variance equalizing transformation
o if Y ~ Poiss(Xf3), then V'Y has constant variance

@ Besag's original version

L(x) = VK(x)/m

o Wiegand and Moloney (2014) call this L;(x)
o Under CSR: L(x) = x, Var [(x) approx constant.
o | prefer L*(x) = L(x) — x
o Wiegand and Moloney (2014) call this L(x)
o Nice feature of L* = L»(x): under CSR, L*(x) =0
o | believe plots of L* are much clearer (but you decide which you
prefer)
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Clustered
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Pair correlation functions

e K(x) and L(x) are cumulative measures
o Based on number of events within x of another event
o What if you want to describe association at distance x?
o Closer to intuition about spatial scale
o Can untangle multiple processes
o inhibition at short distances
o clustering at large distances

@ pair-correlation function, g(x) or p(x)

1 dK(x)

80) = 55 T

under CSR (K(x) = mx?), %ff) =2mx, and g(x) =1

o g(x) > 1= events more likely AT distance x than under CSR =
clustering at a scale of x

g(x) < 1= events less likely AT distance x than under CSR =
repulsion at a scale of x

range is (0, co) with 1 as the neutral point

so often log transform: evaluate log g(x)
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Estimators of g(x)

@ g(x) is much harder to estimate than K(x)
o K(x) is a sum (# events within distance < x)
e g(x) depends on 0/1 variable: is there an event at distance = x or not
o parallel to the issue that a cdf: P[X < x] is easier to estimate than a
pdf: fIX = x]
@ Two proposed estimators:
o Wiegand and Moloney “O-ring” estimator: # events within (x, x + dx)
equivalent to binning obs. to make a histogram
o kernel smoothing: much better (both for density estimation and g(x))
o What is the histogram of 5,10,11,11, 12, 167
o choice of “bin width” really matters
@ see next two slides
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Historgram with narrow categories
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Kernel smoothi

o Histograms estimate probability density for a range of X using only
the values in that range

@ the variance in the estimated probability depends on the number of
obs in the bin
o wide bin: many points, low variance, but biased estimate (one number
for many X values)
o narrow bin: low bias (small range of X values), but large variance (few
obs in bin)
@ Density estimation partially avoids this tradeoff and is less dependent
on the breaks between categories
o Concept: superimpose little “bumps” of probability around each obs.
Add up the probability to estimate f(x)
@ result depends on sd of each “bump”
@ sd called "bandwidth”
@ result also depends on “kernel”, i.e. the shape of the bump
@ notice that range of density estimate is wider than data range.
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Clustered
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measures

@ 1) to test CSR: pointwise tests

estimate [(x) at a range of distances, x
use simulation to calculate point-wise quantiles of L(x)
plot L(x) and simulation envelope
interpret deviations above and below expected
consider distance xj, then distance x,
called pointwise-tests.
Type | error rate, « level, correct for one test
One issue (serious): multiple testing
o doing many tests, one at each distance
o P[reject — CSR at any distance] is much larger than P[reject — CSR]
o especially for cumulative summary functions, K(x) and L(x)
o
]

Quite hard to do a true level o test
usual approaches don't work well because L(x1) and L(x;) are correlated
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measures

@ 2) summary tests of CSR

o Calculate a summary statistic across “relevant” range of distances
e Two common choices, using L(x) as example:
s = maxy[| L(x) — L(x) |] (maximum statistic, Maximum Absolute

]
Deviation)
o s= fx[i(x) — L(x)]? (integral statistic, Loosmore and Ford test)
o Both computed by evaluating “interesting” set of x, finding max or sum

L(x) can be theoretical expectation (K (x) = mx?, Ly(x) = 0)
e Or, L(x) computed as average of n simulations (see below)
e accounts for bias due to edge corrections
o Integral better when consistent but small deviations above expected
curve
@ more commonly used
o Max better when large excursion from theoretical value for a small
range of distances
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Summary tests

@ Turning into a hypothesis test
o Have syps from the observed pattern
o Simulate many (39, 99, 999) random patterns under HO (e.g., CSR)
o Calculate summary statistic for observed data and each simulated data
set
o Calculate P[as or more extreme summary statistic] = p-value
o Usually one-sided definition of more extreme (only care about large s)

@ This avoids multiple testing issues and gives valid p-value
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Summary tests: Cypress pointwise tests
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Summary tests: Cypress summary tests
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Summary tests

@ Need to choose upper and lower distances
o best when chosen to be biologically relevant.
e DON'T look for the most significant region
@ most commonly used to test CSR
o But you specify the null hypothesis
o same approach can be used for any point process model (examples
coming soon)
o The integral and especially the maximum statistic assume Var L(x)
approximately constant
o Don't use K(x): because Var K(x) is definitely not constant
e Use L(x) instead, approximately constant variance
o But not perfect (see next two plots)

o Can transform G(x) or F(x) (both proportions), e.g. sin™*1/G(x)

@ There are studentized summary statistics, if unequal Var is bad
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A poor use of a test of CSR

@ Until a few years ago, it was fashionable to

map locations of all things in an area. Usually trees or other plants,
could be animal nests

o usually many species

for each species, test CSR (usually using K/L functions)

tabulate # species that are clustered, # random, # regular

o then make ecological conclusions about the community

@ do you see the issue here?
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A poor use of a test of CSR

If you don't reject HO: CSR for a species, do you know that species is
randomly distributed?

@ What if you only had 10 individuals for that species?

o Statistical power to detect 'not-CSR' is really small

o failure to reject HO does not = HO is true
@ In my experience (mostly with trees)

o large # events: detect clustering, sometimes regularity
o small # events: accept HO

o If you expect intensity to vary over a study area, that introduces
clustering.
@ If you believe that non-random spatial patterns are the norm, the

hypothesis test is really telling you only whether you have a
sufficiently large sample size to detect that non-random pattern.
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Interpreting / using measures

@ 3) Estimating # “excess events”
if pattern is CSR, expect A\mx? events within radius x of another event

]

e data says an average of )\R(X) events within radius x of another event
o AK(x) — Amx? is average “excess events”

o describes magnitude of clustering in subject-matter terms

o less frequently used is % -1

proportion of excess events at distance x
o Cypress tree illustration
o A =098/(50 x 200) = 0.0098
o at distance of 10m, K(10) = 488.6 = ave. of 4.7 cypress trees within
10m of another cypress tree
o w102 = 314.7 = 1.7 excess cypress trees within 10m of another.

o Or, 4888 _ 1 = 0.55 = 55% more cypress trees within 10m of another.
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Interpreting / using measures

@ 4) Describing spatial scale
o “scale” is a tricky concept. Various definitions
o Here, scale = distance(s) at which events repulse each other or attract
each other
o A distance-specific concept
o Many studies have used K(x) or L(x) to estimate scale, e.g. find x
where L(x) is most different from theoretical value
@ Increasingly understood to be wrong
o Both K(x) and L(x) are cumulative functions: # points within circle of
radius x
o Small # at distance x may be because repulsion (fewer pts.) at
distances < x, even if strong clustering at x
o Really want to know what is going on AT distance x, not < x

@ Use pair-correlation function
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Interpreting / using measures

o 5) How precise is L(x) or g(x)?
o Not the width of the Null hypothesis envelopes
Precision of L(x) or &(x)
o Certainly depends on N = # points
o But also on the spatial pattern
o K(x) more variable for clustered patterns

@ If you know the true spatial pattern, simulate from that pattern and
calculate envelope

o If you don’t know the true pattern, use a bootstrap

@ Point pattern bootstrap proposed by Loh, 2008
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The bootstrap

o General method for estimating precision of a statistic
@ Uses resampling the data to approximate the unknown sampling
distribution of a statistic
@ Gives you the se of a statistic or a confidence interval for a statistic
o Cl much more common
Not the same as a randomization test or a null hypothesis test
o Hypothesis test: simulate / resample assuming HO (CSR, no diff. in
means)
o Bootstrap: simulate / resample assuming Ha (arbitrary pattern,
non-zero diff)
Extremely useful tool for “difficult” problems
Usual forms of bootstrap don't work for point pattern data
Problem is that one point contributes to many L(x)
Loh devised something that (so far) is acceptable sometimes
o resample contributions to 2(x) or L(x)
Issues when bootstrap average curve not same as data curve (see
below)
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Cypress L(x) bootstrap
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a(r)
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Cypress g(x) CSR (null) envelope
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